Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Biochem Biophys Res Commun ; 715: 149994, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38692139

RESUMO

Many virus lysis/transport buffers used in molecular diagnostics, including the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, contain guanidine-based chaotropic salts, primarily guanidine hydrochloride (GuHCl) or guanidine isothiocyanate (GITC). Although the virucidal effects of GuHCl and GITC alone against some enveloped viruses have been established, standardized data on their optimum virucidal concentrations against SARS-CoV-2 and effects on viral RNA stability are scarce. Thus, we aimed to determine the optimum virucidal concentrations of GuHCl and GITC against SARS-CoV-2 compared to influenza A virus (IAV), another enveloped respiratory virus. We also evaluated the effectiveness of viral RNA stabilization at the determined optimum virucidal concentrations under high-temperature conditions (35°C) using virus-specific real-time reverse transcription polymerase chain reaction. Both viruses were potently inactivated by 1.0 M GITC and 2.5 M GuHCl, but the GuHCl concentration for efficient SARS-CoV-2 inactivation was slightly higher than that for IAV inactivation. GITC showed better viral RNA stability than GuHCl at the optimum virucidal concentrations. An increased concentration of GuHCl or GITC increased viral RNA degradation at 35°C. Our findings highlight the need to standardize GuHCl and GITC concentrations in virus lysis/transport buffers and the potential application of these guanidine-based salts alone as virus inactivation solutions in SARS-CoV-2 and IAV molecular diagnostics.


Assuntos
Guanidina , Vírus da Influenza A , RNA Viral , SARS-CoV-2 , Manejo de Espécimes , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Guanidina/farmacologia , Guanidina/química , RNA Viral/genética , Humanos , Manejo de Espécimes/métodos , Genoma Viral , COVID-19/virologia , COVID-19/diagnóstico , Chlorocebus aethiops , Células Vero , Inativação de Vírus/efeitos dos fármacos , Animais , Estabilidade de RNA/efeitos dos fármacos , Contenção de Riscos Biológicos , Guanidinas/farmacologia , Guanidinas/química , Sais/farmacologia , Sais/química
2.
Heliyon ; 10(9): e30492, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38711631

RESUMO

Norovirus (NoV) causes serious gastrointestinal disease worldwide and is regarded as an important foodborne pathogen. Due the difficulties of in vitro cultivation for human NoV, alternative caliciviruses (i.e., feline calicivirus, FCV, or murine NoV) have long been used as surrogates for in vitro assessment of the efficacy of antivirals. Essential oils (EOs) are natural compounds that have displayed antimicrobial and antioxidant properties. We report in vitro the virucidal efficacy of four EOs, Melissa officinalis L. EO (MEO), Thymus vulgaris L. EO (TEO), Rosmarinus officinalis L. EO (REO), and Salvia officinalis L. EO (SEO) against FCV at different time contacts (10, 30 min, 1, 4 and 8 h). At the maximum non-cytotoxic concentration and at 10- and 100- fold concentrations over the cytotoxic threshold, the EOs did not decrease significantly FCV viral titers. However, MEO at 12,302.70 µg/mL exhibited a significant efficacy decreasing the viral titer by 0.75 log10 Tissue Culture Infectious Dose (TCID50)/50 µl after 10 min as compared to virus control. In this study, virucidal activity of four EOs against FCV, was investigated. A lack of virucidal efficacy of TEO, REO and SEO at different compound concentrations and time contacts against FCV was observed whilst MEO was able to significantly decrease FCV titer.

3.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673729

RESUMO

Here, we continued the investigation of anti-HSV-1 activity and neuroprotective potential of 14 polyphenolic compounds isolated from Maackia amurensis heartwood. We determined the absolute configurations of asymmetric centers in scirpusin A (13) and maackiazin (10) as 7R,8R and 1″S,2″S, respectively. We showed that dimeric stilbens maackin (9) and scirpusin A (13) possessed the highest anti-HSV-1 activity among polyphenols 1-14. We also studied the effect of polyphenols 9 and 13 on the early stages of HSV-1 infection. Direct interaction with the virus (virucidal activity) was the main mechanism of the antiviral activity of these compounds. The neuroprotective potential of polyphenolic compounds from M. amurensis was studied using models of 6-hydroxydopamine (6-OHDA)-and paraquat (PQ)-induced neurotoxicity. A dimeric stilbene scirpusin A (13) and a flavonoid liquiritigenin (6) were shown to be the most active compounds among the tested polyphenols. These compounds significantly increased the viability of 6-OHDA-and PQ-treated Neuro-2a cells, elevated mitochondrial membrane potential and reduced the intracellular ROS level. We also found that scirpusin A (13), liquiritigenin (6) and retusin (3) considerably increased the percentage of live Neuro-2a cells and decreased the number of early apoptotic cells. Scirpusin A (13) was the most promising compound possessing both anti-HSV-1 activity and neuroprotective potential.


Assuntos
Antivirais , Herpes Simples , Herpesvirus Humano 1 , Neurônios , Fármacos Neuroprotetores , Estresse Oxidativo , Polifenóis , Polifenóis/farmacologia , Polifenóis/química , Estresse Oxidativo/efeitos dos fármacos , Herpesvirus Humano 1/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Antivirais/farmacologia , Antivirais/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Herpes Simples/tratamento farmacológico , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Sobrevivência Celular/efeitos dos fármacos
4.
Biometals ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502284

RESUMO

Coating high-touch surfaces with inorganic agents, such as metals, appears to be a promising long-term disinfection strategy. However, there is a lack of studies exploring the effectiveness of copper-based products against viruses. In this study, we evaluated the cytotoxicity and virucidal effectiveness of products and materials containing copper against mouse hepatitis virus (MHV-3), a surrogate model for SARS-CoV-2. The results demonstrate that pure CuO and Cu possess activity against the enveloped virus at very low concentrations, ranging from 0.001 to 0.1% (w/v). A greater virucidal efficacy of CuO was found for nanoparticles, which showed activity even against viruses that are more resistant to disinfection such as feline calicivirus (FCV). Most of the evaluated products, with concentrations of Cu or CuO between 0.003 and 15% (w/v), were effective against MHV-3. Cryomicroscopy images of an MHV-3 sample exposed to a CuO-containing surface showed extensive damage to the viral capsid, presumably due to the direct or indirect action of copper ions.

5.
Animals (Basel) ; 14(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473067

RESUMO

The Caliciviridae family includes several viral pathogens of humans and animals, including norovirus (NoV), genus Norovirus, and feline calicivirus (FCV), genus Vesivirus. Due to their resistance in the environment, NoV and FCV may give rise to nosocomial infections, and indirect transmission plays a major role in their diffusion in susceptible populations. A pillar of the control of viruses resistant to an environment is the adoption of prophylaR1.6ctic measures, including disinfection. Since NoVs are not cultivatable in common cell cultures, FCV has been largely used as a surrogate of NoV for the assessment of effective disinfectants. Ozone (O3), a molecule with strong oxidizing properties, has shown strong microbicidal activity on bacteria, fungi, protozoa, and viruses. In this study, the virucidal and antiviral activities of an O3/O2 gas mixture containing O3 were tested at different concentrations (20, 35, and 50 µg/mL) for distinct contact times against FCV. The O3/O2 gas mixture showed virucidal and antiviral activities against FCV in a dose- and contact time-dependent fashion. Ozonation could be considered as a valid strategy for the disinfection of environments at risk of contamination by FCV and NoV.

6.
Arch Pharm (Weinheim) ; 357(1): e2300424, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37828623

RESUMO

The pneumonia (COVID-19) outbreak caused by the novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which unpredictably exploded in late December of 2019 has stressed the importance of being able to control potential pathogens with the aim of limiting their spread. Although vaccines are well known as a powerful tool for ensuring public health and controlling the pandemic, disinfection and hygiene habits remain crucial to prevent infection from spreading and maintain the barrier, especially when the microorganism can persist and survive on textiles, surfaces, and medical devices. During the coronavirus disease pandemic, around half of the disinfectants authorized by the US Environmental Protection Agency contained quaternary ammonium compounds (QACs); their effectiveness had not been proven. Herein, the in vitro SARS-CoV-2 inactivation by p-bromodomiphen bromide, namely bromiphen (BRO), a new, potent, and fast-acting QAC is reported. This study demonstrates that BRO, with a dose as low as 0.02%, can completely inhibit SARS-CoV-2 replication in just 30 s. Its virucidal activity was 10- and 100-fold more robust compared to other commercially available QACs, namely domiphen bromide and benzalkonium chloride. The critical micellar concentration and the molecular lipophilicity potential surface area support the relevance of the lipophilic nature of these molecules for their activity.


Assuntos
COVID-19 , SARS-CoV-2 , Estados Unidos , Humanos , Compostos de Amônio Quaternário/farmacologia , Brometos , Relação Estrutura-Atividade
7.
Pathogens ; 12(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38133267

RESUMO

Highly pathogenic avian influenza viruses (HPAIVs) have caused outbreaks in both domestic and wild birds during the winter seasons in several countries in the Northern Hemisphere, most likely because virus-infected wild ducks overwinter and serve as the primary source of infection for other birds in these countries. Several chemical disinfectants are available to deactivate these viruses outside a living organism. However, their virucidal activity is known to be compromised by various factors, including temperature and contamination with organic matter. Hence, the effectiveness of virucidal activity under winter field conditions is crucial for managing HPAIV outbreaks. To investigate the impact of the winter field conditions on the virucidal activity of disinfectants against AIVs, we assessed the stability of the virucidal activity of seven representative disinfectants that are commercially available for poultry farms in Japan against both LPAIVs and HPAIVs under cold and/or organic contamination conditions. Of the seven disinfectants examined, the ortho-dichlorobenzene/cresol-based disinfectant exhibited the most consistent virucidal activity under winter field conditions, regardless of the virus pathogenicity or subtype tested.

8.
Viruses ; 15(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38005856

RESUMO

Viral disinfection is important for medical facilities, the food industry, and the veterinary field, especially in terms of controlling virus outbreaks. Therefore, standardized methods and activity levels are available for these areas. Usually, disinfectants used in these areas are characterized by their activity against test organisms (i.e., viruses, bacteria, and/or yeasts). This activity is usually determined using a suspension test in which the test organism is incubated with the respective disinfectant in solution to assess its bactericidal, yeasticidal, or virucidal activity. In addition, carrier methods that more closely reflect real-world applications have been developed, in which microorganisms are applied to the surface of a carrier (e.g., stainless steel frosted glass, or polyvinyl chloride (PVC)) and then dried. However, to date, no standardized methods have become available for addressing genetically modified vectors or disinfection-resistant oncolytic viruses such as the H1-parvovirus. Particularly, such non-enveloped viruses, which are highly resistant to disinfectants, are not taken into account in European standards. This article proposes a new activity claim known as "virucidal activity PLUS", summarizes the available methods for evaluating the virucidal activity of chemical disinfectants against genetically modified organisms (GMOs) using current European standards, including the activity against highly resistant parvoviridae such as the adeno-associated virus (AAV), and provides guidance on the selection of disinfectants for pharmaceutical manufacturers, laboratories, and clinical users.


Assuntos
Desinfetantes , Infecções por Parvoviridae , Parvovirus , Vírus , Humanos , Desinfetantes/farmacologia , Desinfecção/métodos , Vírus/genética
9.
Z Naturforsch C J Biosci ; 78(9-10): 365-376, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37401758

RESUMO

Ricinus communis L. is a medicinal plant that displays valuable pharmacological properties, including antioxidant, antimicrobial, analgesic, antibacterial, antiviral and anti-inflammatory properties. This study targeted to isolate and identify some constituents of R. communis leaves using ultra-performance liquid chromatography coupled with mass spectroscopy (UPLC-MS/MS) and different chromatographic techniques. In vitro anti-MERS and anti-SARS-CoV-2 activity for different fractions and for two pure isolated compounds, lupeol (RS) and ricinine (RS1) were evaluated using a plaque reduction assay with three different mechanisms and IC50 based on their cytotoxic concentration (CC50) from an MTT assay using Vero E6 cell line. Isolated phytoconstituents and remdesivir are assessed for in-silico anti-COVID-19 activity using molecular docking tools. The methylene chloride extract showed pronounced virucidal activity against SARS-CoV-2 (IC50 = 1.76 µg/ml). It was also shown that ricinine had superior potential activity against SARS-CoV-2, (IC50 = 2.5 µg/ml). Lupeol displayed the most potency against MERS, (IC50 = 5.28 µg/ml). Ricinine appeared to be the most biologically active compound. The study showed that R. communis and its isolated compounds have potential natural virucidal activity against SARS-COV-2; however, additional exploration is necessary and study for their in vivo activity.


Assuntos
COVID-19 , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ricinus/química , SARS-CoV-2 , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem
10.
Life (Basel) ; 13(7)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511986

RESUMO

Propolis is a natural mixture of resins, wax, and pollen from plant buds and flowers, enriched with enzymes and bee saliva. It also contains various essential oils, vitamins, mineral salts, trace elements, hormones, and ferments. It has been found that propolis possesses antimicrobial, antiviral, and anti-inflammatory properties. We have studied the antiviral activity of six extracts of Bulgarian propolis collected from six districts of Bulgaria. The study was conducted against structurally different viruses: human coronavirus strain OC-43 (HCoV OC-43) and human respiratory syncytial virus type 2 (HRSV-2) (enveloped RNA viruses), human herpes simplex virus type 1 (HSV-1) (enveloped DNA virus), human rhinovirus type 14 (HRV-14) (non-enveloped RNA virus) and human adenovirus type 5 (HadV-5) (non-enveloped DNA virus). The influence of the extracts on the internal replicative cycle of viruses was determined using the cytopathic effect (CPE) inhibition test. The virucidal activity, its impact on the stage of viral adsorption to the host cell, and its protective effect on healthy cells were evaluated using the final dilution method, making them the focal points of interest. The change in viral infectivity under the action of propolis extracts was compared with untreated controls, and Δlgs were determined. Most propolis samples administered during the viral replicative cycle demonstrated the strongest activity against HCoV OC-43 replication. The influence of propolis extracts on the viability of extracellular virions was expressed to a different degree in the various viruses studied, and the effect was significantly stronger in those with an envelope. Almost all extracts significantly inhibited the adsorption step of the herpes virus and, to a less extent, of the coronavirus to the host cell, and some of them applied before viral infection demonstrated a protective effect on healthy cells. Our results enlarge the knowledge about the action of propolis and could open new perspectives for its application in viral infection treatment.

11.
Polymers (Basel) ; 15(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299335

RESUMO

It is well known that viruses cannot replicate on their own but only inside the cells of target tissues in the organism, resulting in the destruction of the cells or, in some cases, their transformation into cancer cells. While viruses have relatively low resistance in the environment, their ability to survive longer is based on environmental conditions and the type of substrate on which they are deposited. Recently, the potential for safe and efficient viral inactivation by photocatalysis has garnered increasing attention. In this study, the Phenyl carbon nitride/TiO2 heterojunction system, a hybrid organic-inorganic photocatalyst, was utilized to investigate its effectiveness in degrading the flu virus (H1N1). The system was activated by a white-LED lamp, and the process was tested on MDCK cells infected with the flu virus. The results of the study demonstrate the hybrid photocatalyst's ability to cause the virus to degrade, highlighting its effectiveness for safe and efficient viral inactivation in the visible light range. Additionally, the study underscores the advantages of using this hybrid photocatalyst over traditional inorganic photocatalysts, which typically only work in the ultraviolet range.

12.
Vopr Virusol ; 67(6): 506-515, 2023 02 07.
Artigo em Russo | MEDLINE | ID: mdl-37264840

RESUMO

INTRODUCTION: The urgent problem of modern medicine is the fight against acute respiratory viral infections (ARVI). To combat ARVI, drugs of wide antiviral potency are needed, as well as immunomodulating drugs. Such antiviral and immunomodulatory effects has sodium deoxyribonucleate (DNA-Na) and its complex with iron (DNA-Na-Fe) developed on the basis of double-stranded DNA of natural origin. AIM OF THE STUDY: To assess antiviral and virucidal activity of DNA-Na and DNA-Na-Fe against viruses of different kingdoms and families. MATERIALS AND METHODS: Antiviral and virucidal activity of DNA-Na and DNA-Na-Fe was assessed in cell cultures infected with viruses. RESULTS AND DISCUSSION: DNA-Na and DNA-Na-Fe had antiviral activity against adenovirus at concentrations of 2501000 mcg/ml. Antiviral effect of both drugs was not detected in case of poliovirus. DNA-Na and DNA-Na-Fe had antiviral activity against coronavirus in all administration schemes. EC50 for DNA-Na ~ 2500 mcg/ml, for DNA-Na-Fe ~ 1000 mcg/ml. In cells treated with DNA-Na-Fe, secretion of following proinflammatory cytokines was detected: Interleukin (IL) 1, IL-2, IL-6, IL-18, interferon- (IFN-), IFN-, as well as anti-inflammatory cytokines: IL-4, IL-10, antagonist of IL-1 receptor. Evidently, DNA-Na and DNA-Na-Fe have antiviral effect, but mechanism of action does not seem to be associated with specific effect on viral replication. Presence of virucidal activity of drugs against representatives of Coronaviridae, Adenoviridae, Picornaviridae, Retroviridae, Herpesviridae in vitro test in range of 1.03.0 lg TCID50 was identified. CONCLUSION: Presence of simultaneous antiviral and virucidal activity of DNA-Na and DNA-Na-Fe against adeno- and coronaviruses shows their prospects for prevention and treatment of ARVI.


Assuntos
Infecções por Coronavirus , Coronavirus , Herpesviridae , Infecções Respiratórias , Viroses , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Ferro/farmacologia , Ferro/uso terapêutico , Sódio/farmacologia , Sódio/uso terapêutico , Viroses/tratamento farmacológico , Adenoviridae , Citocinas
13.
Cureus ; 15(5): e39421, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37362483

RESUMO

The coronavirus disease (COVID-19), caused by the virus SARS-CoV-2, has become a global pandemic in a very short time span. While several vaccines have been developed in the last year, specific treatments for CoV infection are still being explored. Thus, the situation highlights the need to develop safe and efficacious antiviral therapeutics. Ayurvedic Rasayana therapy has been traditionally used in India for its holistic healing systems and proven history of empirical use. There is emerging evidence that Ayurvedic treatment methodologies and herbal medicines may be effective strategies in combating COVID-19. The present study is aimed at evaluating the antiviral and therapeutic activity of an Ayurvedic herbomineral formulation (Svarnvir-IV tablet, 450 mg) against the SARS-CoV-2 virus in vitro. A cell-based assay was conducted to evaluate the cytotoxicity of the Svarnvir-IV tablets (Aimil Pharmaceuticals, Delhi, India) for the determination of virucidal activity assessment (at 2 hours) and therapeutic activity assessment (at 1 hour, 2 hours, and 4 hours). When incubated with SARS-CoV-2 virus at 0.1 multiplicity of infection (MoI) for two hours, Svarnvir-IV tablet exhibited virucidal activity against SARS-CoV-2 with an EC50 value of 0.0058 mg/ml. It also exhibited therapeutic activity when treated with cells infected with the SARS-CoV-2 virus (0.1 MoI) for 1 hour, 2 hours and 4 hours post-infection, with an EC50 value of 0.094 mg/ml, 0.023 mg/ml, and 0.05 mg/ml, respectively. The original supporting data obtained from this study, along with existing Ayurvedic traditional information, has shown encouraging results.

14.
Animals (Basel) ; 13(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37370430

RESUMO

Alphaherpesviruses cause genital lesions and reproductive failure in both humans and animals. Their control is mainly based on prevention using hygienic prophylactic measures due to the absence of vaccines and limitations of antiviral drug therapy. Ozone is an oxidating gas showing a strong microbicidal activity on bacteria, fungi, viruses, and protozoa. The present study assessed the in vitro virucidal and antiviral activity of ozone against caprine herpesvirus type 1 (CpHV-1). The virucidal activity of a gaseous mixture containing O3 at 20 and 50 µg/mL was assessed against the virus at different contact times (30 s, 60 s, 90 s, 120 s, 180 s, and 300 s). Antiviral activity of a gaseous mixture containing O3 at 20 and 50 µg/mL was evaluated against the virus after 30 s and 60 s. Ozone displayed significant virucidal activity when used at all the tested concentrations whilst significant antiviral activity was observed using ozone at 50 µg/mL. The gaseous mixture, tested in the present study, showed virucidal and antiviral activity against CpHV-1 in a dose- and time contact-dependent fashion. Ozone therapy could be evaluated in vivo for the treatment of CpHV-1-induced genital lesions in goats using topical applications.

15.
Molecules ; 28(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241897

RESUMO

The large-scale use of alcohol (OH)-based disinfectants to control pathogenic viruses is of great concern because of their side effects on humans and harmful impact on the environment. There is an urgent need to develop safe and environmentally friendly disinfectants. Essential oils (EOs) are generally recognized as safe (GRAS) by the FDA, and many exhibit strong antiviral efficacy against pathogenic human enveloped viruses. The present study investigated the virucidal disinfectant activity of solutions containing EO and OH against DENV-2 and CHIKV, which were used as surrogate viruses for human pathogenic enveloped viruses. The quantitative suspension test was used. A solution containing 12% EO + 10% OH reduced > 4.0 log10 TCID50 (100% reduction) of both viruses within 1 min of exposure. In addition, solutions containing 12% EO and 3% EO without OH reduced > 4.0 log10 TCID50 of both viruses after 10 min and 30 min of exposure, respectively. The binding affinities of 42 EO compounds and viral envelope proteins were investigated through docking analyses. Sesquiterpene showed the highest binding affinities (from -6.7 to -8.0 kcal/mol) with DENV-2 E and CHIKV E1-E2-E3 proteins. The data provide a first step toward defining the potential of EOs as disinfectants.


Assuntos
Desinfetantes , Óleos Voláteis , Vírus , Humanos , Óleos Voláteis/farmacologia , Desinfetantes/farmacologia , Desinfetantes/química , Antivirais/farmacologia , Etanol
16.
New Microbiol ; 46(2): 161-169, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37247237

RESUMO

Ultraviolet-C (UVC) has been used to cause virus inactivation. The virucidal activity of three UV light lamps [UVC high frequencies (HF), UVC+B LED and UVC+A LED] was evaluated against the enveloped feline coronavirus (FCoVII), a surrogate model of SARS-CoV-2, the enveloped vesicular stomatitis virus (VSV), and the naked encephalomyocarditis virus (EMCV). Virucidal assays were performed at different time points of UV-light exposure (i.e., 5, 30 minutes and 1, 6, and 8 hours), placing each virus 180 cm below the perpendicular irradiation of the lamp and 1 and 2 meters from the perpendicular axis. We found that the UVC HF lamp had virucidal effects (≥96.8% of virus inactivation) against FCoVII, VSV and EMCV after 5 minutes of irradiation at each distance analyzed. Moreover, the UVC+B LED lamp had the highest inhibitory effects on FCoVII and VSV infectivity (≥99% of virus inactivation) when these viruses were settled below the perpendicular axis of the lamp for 5 minutes. Conversely, the UVC+A LED lamp was the least effective, achieving ≥85.9% inactivation of enveloped RNA viruses after 8 hours of UV exposure. Overall, UV light lamps, and in particular UVC HF and UVC+B LED ones, had a rapid and strong virucidal activity against distinct RNA viruses, including coronaviruses.


Assuntos
COVID-19 , Vírus , Humanos , Raios Ultravioleta , SARS-CoV-2 , Desinfecção
17.
Appl Environ Microbiol ; 89(6): e0023723, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184410

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), and norovirus are global threats to human health. The application of effective virucidal agents, which contribute to the inactivation of viruses on hands and environmental surfaces, is important to facilitate robust virus infection control measures. Naturally derived virucidal disinfectants have attracted attention owing to their safety and eco-friendly properties. In this study, we showed that multiple Japanese Saxifraga species-derived fractions demonstrated rapid, potent virucidal activity against the SARS-CoV-2 ancestral strain and multiple variant strains, IAV, and two human norovirus surrogates: feline calicivirus (FCV) and murine norovirus (MNV). Condensed tannins were identified as active chemical constituents that play a central role in the virucidal activities of these fractions. At a concentration of 25 µg/mL, the purified condensed tannin fraction Sst-2R induced significant reductions in the viral titers of the SARS-CoV-2 ancestral strain, IAV, and FCV (reductions of ≥3.13, ≥3.00, and 2.50 log10 50% tissue culture infective doses [TCID50]/mL, respectively) within 10 s of reaction time. Furthermore, at a concentration of 100 µg/mL, Sst-2R induced a reduction of 1.75 log10 TCID50/mL in the viral titers of MNV within 1 min. Western blotting and transmission electron microscopy analyses revealed that Sst-2R produced structural abnormalities in viral structural proteins and envelopes, resulting in the destruction of viral particles. Furthermore, Saxifraga species-derived fraction-containing cream showed virucidal activity against multiple viruses within 10 min. Our findings indicate that Saxifraga species-derived fractions containing condensed tannins can be used as disinfectants against multiple viruses on hands and environmental surfaces. IMPORTANCE SARS-CoV-2, IAV, and norovirus are highly contagious pathogens. The use of naturally derived components as novel virucidal/antiviral agents is currently attracting attention. We showed that fractions from extracts of Saxifraga species, in the form of a solution as well as a cream, exerted potent, rapid virucidal activities against SARS-CoV-2, IAV, and surrogates of human norovirus. Condensed tannins were found to play a central role in this activity. The in vitro cytotoxicity of the purified condensed tannin fraction at a concentration that exhibited some extent of virucidal activity was lower than that of 70% ethanol or 2,000 ppm sodium hypochlorite solution, which are popular virucidal disinfectants. Our study suggests that Saxifraga species-derived fractions containing condensed tannins can be used on hands and environmental surfaces as safe virucidal agents against multiple viruses.


Assuntos
Desinfetantes , Vírus da Influenza A , Norovirus , Proantocianidinas , SARS-CoV-2 , Saxifragaceae , Desinfetantes/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Norovirus/efeitos dos fármacos , Proantocianidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Saxifragaceae/química , Taninos
18.
Eur J Med Chem ; 254: 115380, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37075625

RESUMO

The recent emergence of different SARS-CoV-2 variants creates an urgent need to develop more effective therapeutic agents to prevent COVID-19 outbreaks. Among SARS-CoV-2 essential proteases is papain-like protease (SARS-CoV-2 PLpro), which plays multiple roles in regulating SARS-CoV-2 viral spread and innate immunity such as deubiquitinating and deISG15ylating (interferon-induced gene 15) activities. Many studies are currently focused on targeting this protease to tackle SARS-CoV-2 infection. In this context, we performed a phenotypic screening using an in-house pilot compounds collection possessing a diverse skeleta against SARS-CoV-2 PLpro. This screen identified SIMR3030 as a potent inhibitor of SARS-CoV-2. SIMR3030 has been shown to exhibit deubiquitinating activity and inhibition of SARS-CoV-2 specific gene expression (ORF1b and Spike) in infected host cells and possessing virucidal activity. Moreover, SIMR3030 was demonstrated to inhibit the expression of inflammatory markers, including IFN-α, IL-6, and OAS1, which are reported to mediate the development of cytokine storms and aggressive immune responses. In vitro absorption, distribution, metabolism, and excretion (ADME) assessment of the drug-likeness properties of SIMR3030 demonstrated good microsomal stability in liver microsomes. Furthermore, SIMR3030 demonstrated very low potency as an inhibitor of CYP450, CYP3A4, CYP2D6 and CYP2C9 which rules out any potential drug-drug interactions. In addition, SIMR3030 showed moderate permeability in Caco2-cells. Critically, SIMR3030 has maintained a high in vivo safety profile at different concentrations. Molecular modeling studies of SIMR3030 in the active sites of SARS-CoV-2 and MERS-CoV PLpro were performed to shed light on the binding modes of this inhibitor. This study demonstrates that SIMR3030 is a potent inhibitor of SARS-CoV-2 PLpro that forms the foundation for developing new drugs to tackle the COVID-19 pandemic and may pave the way for the development of novel therapeutics for a possible future outbreak of new SARS-CoV-2 variants or other Coronavirus species.


Assuntos
COVID-19 , Papaína , Humanos , Papaína/química , Papaína/genética , Papaína/metabolismo , SARS-CoV-2 , Inibidores de Proteases/farmacologia , Células CACO-2 , Pandemias , Peptídeo Hidrolases/metabolismo , Antivirais/farmacologia , Antivirais/química
19.
Int J Pharm ; 636: 122790, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863542

RESUMO

This paper describes the development of a coating for cotton and polypropylene (PP) fabrics based on a polymeric matrix embedded with cuprous oxide nanoparticles (Cu2O@SDS NPs) in order to inactivate SARS-CoV-2 and manufactured by a simple process using a dip-assisted layer-by-layer technology, at low curing temperature and without the need for expensive equipment, capable of achieving disinfection rates of up to 99%. The polymeric bilayer coating makes the surface of the fabrics hydrophilic, enabling the transportation of the virus-infected droplets to achieve the rapid inactivation of SARS-CoV-2 by contact with the Cu2O@SDS NPs incorporated in the coated fabrics.


Assuntos
COVID-19 , Nanopartículas , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Têxteis , Polímeros
20.
Viruses ; 15(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36992391

RESUMO

The use of natural substances with antiviral properties might reduce foodborne viral diseases. In this study, we evaluated the virucidal effect of Citrus limon and Thymus serpyllum essential oils (EOs) and of Citrus Limon, Thymus serpyllum and Thymus vulgaris hydrolates on murine norovirus (MNV), a human norovirus surrogate. To assess the virucidal effect of these natural substances, the reduction in viral infectivity was estimated by comparing the TCID50/mL of untreated viral suspension and the viral suspension treated with hydrolates and EOs at different concentrations. The results showed a natural loss of infectivity of the untreated virus after 24 h of approx. 1 log. The EO (1%) of T. serpyllum, and hydrolates (1% and 2%) of T. serpyllum and T. vulgaris immediately caused a reduction in MNV infectivity of about 2 log but did not provide a further significant decrease after 24 h. Instead, the EO (1%) and hydrolate (1% and 2%) of C. limon exerted an immediate reduction in the viral infectivity of about 1.3 log and 1 log, respectively, followed by a further reduction in infectivity of 1 log after 24 h for the hydrolate. These results will allow for the implementation of a depuration treatment based on the use of these natural compounds.


Assuntos
Doenças Transmitidas por Alimentos , Norovirus , Óleos Voláteis , Animais , Camundongos , Humanos , Óleos Voláteis/farmacologia , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...